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Key message 4 

Sonic tomography can be used to examine reductions in the load-bearing capacity of tree parts with 5 

internal defects, but the limitations of sonic tomography and mathematical methods must be 6 

considered. 7 

 8 

Abstract 9 

The measurement and assessment of internal defects is an important aspect of tree risk assessment. 10 

Although there are several methods for estimating the reduced load-bearing capacity of trees with 11 

internal defects, the advancement of these methods has not kept pace with improvements to methods 12 

used to measure the internal condition of trees, such as sonic tomography. In this study, the percent 13 

reduction to the section modulus, ZLOSS (%), caused by internal defects was estimated using 51 sonic 14 

tomograms collected from three tree species, and the accuracy of measurements was assessed using 15 

the destructively measured internal condition of the corresponding cross sections. In tomograms, there 16 

was a repeated underestimation of the percent total damaged area, AD (%), and a repeated 17 

overestimation of the offset distance between the centroid of the trunk and the centroid of the largest 18 

damaged part, LO (m). As a result, ZLOSS determined using tomograms was mostly less, in absolute 19 

terms, than determined from destructive measurements. However, the accuracy of these estimates 20 

improved when using colors associated with intermediate sonic velocities to select damaged parts in 21 

tomograms, in addition to the colors explicitly associated with the slowest sonic velocities. Among 22 

seven mathematical methods used to estimate ZLOSS, those accounting for LO were more accurate than 23 

others neglecting it. In particular, a numerical method incorporating greater geometric detail, called 24 

zloss, gave estimates that were consistently better than six other analytical methods.  25 
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Introduction 7 

Several formulas have been used to estimate the strength loss (i.e., loss in load-bearing capacity) 8 

caused by internal defects in living trees, and most are based on the difference in the second moment 9 

of area, I (m4), between a hollow and solid trunk section (Kane et al. 2001). I represents the load-10 

bearing capacity of a shape where the contribution of a material element to a total bending moment is 11 

proportional to the square of its distance (y) from the neutral axis (Ennos 2012); it can be determined 12 

by summing the many, infinitesimally small moments distributed over a cross section of area (A): 13 

 𝐼 = ∫ 𝑦ଶ𝑑𝐴. Eq. 1 14 

Practically, this means that wood situated near the trunk periphery contributes greater to overall 15 

rigidity. Coder (1989) used the formula to estimate the percent loss in I, ILOSS (%), of a hollow pipe 16 

relative to a solid rod:  17 

 𝐼௅ைௌௌ = 𝑑ସ

𝐷ସൗ , Eq. 2 18 

where d and D are the diameters of hollow and solid circles, respectively. Wagener (1963) modified 19 

this formula as the cube of the same ratio:  20 

 𝐼௅ைௌௌ = 𝑑ଷ

𝐷ଷൗ . Eq. 3 21 

 It is unclear why Wagener (1963) chose this specific exponent. Most observe that it produces a larger 22 

and more conservative estimate over the range of possible d/D (Ciftci et al. 2014, Kane et al. 2001), 23 

but he implied that it offered a coarse approximation of strength loss, presumably as a compromise 24 

between the geometric properties governing bending stress (I  D4) and compression stress (A  D2) 25 

(Wagener 1963). Later, Smiley and Fraedrich (1992) modified this formula to approximate trees with 26 

open cavities as a sector of a circular annulus:  27 
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 𝐼௅ைௌௌ = 𝑑ଷ

𝐷ଷൗ +
𝑅(𝐷ଷ − 𝑑ଷ)

𝐷ଷൗ , Eq. 4 1 

where R is the ratio of cavity opening to stem circumference. For trees without a cavity opening, 2 

estimates given by Eq. 4 are identical to Eq. 3. Among the three formulas, only the latter was 3 

validated with empirical data (Smiley and Fraedrich 1992). 4 

 5 

However, several limitations of these formulas diminish their applicability to many common 6 

situations. The formulas are appropriate for circular cylinders composed of isotropic, homogeneous 7 

material, and Wagener’s (1963) and Coder’s (1989) implicitly assume concentric areas of decay in 8 

which the decayed and solid areas share the same centroid. A circle is often an inexact approximation 9 

of the shape of a tree, especially near the base of those with pronounced buttress roots, and circles 10 

frequently do not accurately describe the shape of decayed areas. In addition, decay is often formed 11 

asymmetrically so that its centroid is offset from that of the trunk, and these formulas ignore the 12 

potentially significant contributions of offset decayed areas (Kane and Ryan 2004).  13 

 14 

To address these limitations, Ciftci et al. (2014) used the section modulus, Z (m3), to evaluate the loss 15 

in load-bearing capacity, taken as moment capacity, due to decay:  16 

 𝑍 = 𝐼/𝑦, Eq. 5 17 

where y is the maximum perpendicular distance (m) between the neutral axis and outermost trunk 18 

fibers. The ratio is needed to calculate bending stress, σ (N·m-2), for beams, or beam-like plant organs 19 

(Niklas 1992): 20 

 𝜎 = 𝑀𝑦/𝐼, Eq. 6 21 

where M (Nm) is a bending moment causing rotation about the neutral axis. Eq. 6 shows that, for any 22 

loading situation, the maximum stress experienced by a cross section of any shape can be minimized 23 

by maximizing Z (Niklas 1992). Ciftci et al. (2014) estimated the percent loss in Z, ZLOSS (%), between 24 

a solid and hollow trunk section, and considered cases with both concentric and non-concentric 25 

decayed areas. The authors also considered the effects of material anisotropy on ZLOSS, which was 26 

negligible (Ciftci et al. 2014).  27 
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 1 

Many of the limitations associated with existing strength-loss formulas arise from the unavailability of 2 

analytical solutions to the moments of irregular shapes (Ciftci et al. 2014, Kane et al. 2001), but 3 

numerical approaches can be used to compute these values for any shape (Koizumi and Hirai 2006). 4 

Numerical analysis could address many of the limitations associated with existing approaches to 5 

estimating strength loss, including irregular geometry and non-concentric decayed areas, but this 6 

would require an accurate description of the size, position, and shape of decay in a trunk cross section.  7 

 8 

Among consulting arborists, sonic tomography (SoT) is increasingly recognized as a useful way to 9 

evaluate the internal condition of trees (Smiley et al. 2011), offering reasonably accurate, non-10 

invasive, and convenient assessments of the internal condition of the tree (Johnstone et al. 2010). 11 

Sonic tomography measures variation in acoustic transmission speeds, which is proportional to the 12 

ratio of wood stiffness to density (Arciniegas et al. 2014). The advantages and limitations of SoT have 13 

been documented by several studies (Brazee et al. 2011, Li et al. 2012, Ostrovsky et al. 2017, Wang et 14 

al. 2009). Although SoT generally depicts the internal condition of trees accurately, some authors 15 

reported that measurements often underestimate the size of decayed areas (Liang et al. 2007, Wang et 16 

al. 2009), overestimate the size of cracks (Wang et al. 2007), and suffer inaccuracies on irregularly 17 

shaped trunks (Gilbert et al. 2016). Notwithstanding these minor shortcomings, sonic tomography is a 18 

natural choice to provide the raw data necessary for a numerical approach to estimating the loss in 19 

load-bearing capacity of trees with internal defects. In this study, existing analytical methods for 20 

estimating ZLOSS were compared to a numerical estimate derived from sonic tomograms. The method 21 

was validated by applying it to sonic tomograms and the corresponding cross-sectional photographs 22 

from a previous study (Marra et al. 2018), in which trees were destructively harvested to assess the 23 

accuracy of interpretations derived from sonic tomograms.  24 

 25 

The specific objectives of this study were to: (i) compare estimates of internal damage in three 26 

hardwood species provided by SoT with internal damage measured on destructively sampled trees; (ii) 27 

compare analytical and numerical estimates of strength loss derived from SoT and destructively 28 
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sampled trees; and (iii) test whether geometric features of damaged parts (i.e., size, position, shape) 1 

affect the accuracy of different approaches to estimating strength loss.  2 

 3 

Materials and methods 4 

Site and tree material 5 

All tomograms and corresponding cross-sectional photographs used for this study were obtained from 6 

a previous study in which the accuracy of tomographic predictions was assessed by destructive 7 

sampling (Marra et al. 2018). In 2014, individuals of three species [American beech (AB, Fagus 8 

grandifolia); sugar maple (SM, Acer saccharum); and yellow birch (YB, Betula alleghaniensis)] were 9 

chosen based on the appearance of internal decay. Trees were assessed using the PiCUS® Sonic 10 

Tomograph 3 (Argus Electronic GmbH, Rostock, Germany) at one to four levels on the lower trunk, 11 

with the lowest cross section typically positioned 50 cm above the soil line. Tomograms display the 12 

relative sound transmission speeds on a colorimetric scale: the greatest sonic transmission speeds, 13 

associated with non-decayed wood, are depicted using varying shades of brown; decreasing speeds 14 

associated with lower density-specific stiffness, and more advanced stages of decay, are depicted, in 15 

order, as green, violet, and blue (Figure 1B). After felling trees, cross sections corresponding with 16 

each tomogram were excised from the trunk and photographed (Figure 1C). For this study, only cross 17 

sections with internal defects detected by SoT were used for analysis. See Marra et al. (2018) for more 18 

details.  19 

 20 

Image analysis 21 

Three separate image files were used for analysis: a geometry image showing only the blue trunk 22 

boundary line (Figure 1A), a sonic tomogram showing the visualized decay pattern (Figure 1B), and a 23 

reference photograph of the tree’s destructively measured internal condition (Figure 1C). The 24 

geometry and tomogram images were oriented identically without annotation and exported as JPEG 25 

files from the PiCUS® software. The size of the exported images was 770 × 770 pixels.  26 

 27 
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A tomogram is displayed by the PiCUS® software in a Cartesian coordinate plane. To extract 1 

boundary coordinates for the solid and damaged parts, an object was created to relate the intrinsic 2 

coordinates of the tomogram images to the spatial coordinates of a Cartesian coordinate system. 3 

Similarly, the recorded distances between measurement points on each trunk were used to relate the 4 

intrinsic coordinates of the reference photographs to a Cartesian coordinate system. These objects 5 

used the calculated physical extent of each pixel to convert a pixel index (row, column) to a 6 

coordinate pair (x, y).  7 

 8 

The geometry and tomogram images were segmented using specific ranges in the hue, saturation, 9 

brightness (HSV) and LAB color space, respectively (Table 1). Each sonic tomogram was segmented 10 

to select either violet and blue (VB) or green, violet, and blue (GVB). This distinction between color 11 

combinations was made because the PiCUS® software excludes green areas when calculating the 12 

percent solid and damaged area in tomograms, but all parts of the cross section need to be classified as 13 

either solid or damaged for ZLOSS calculations.  14 

 15 

Reference images of each tree’s destructively measured internal condition were manually binarized 16 

into black (0) and white (1) images using Adobe Photoshop CS6 Extended (Adobe Systems, Inc., San 17 

Jose, California, United States) in which black and white, respectively, represented damaged and solid 18 

parts (Figure 1D). The trunk boundary, excluding bark, was used to define an enclosed region of 19 

interest, and the extent of damaged parts was determined visually by the presence of discoloration, 20 

cavities, cracks, and decayed wood. Wood discolored by the host defensive response and heartwood 21 

formation were classified as solid parts. Visual identification of damaged parts in cross sections is 22 

consistent with most existing studies (Brazee et al. 2011, Gilbert and Smiley 2004, Liang and Fu 23 

2012, Ostrovsky et al. 2017).  24 

 25 

After selecting specific colors, the boundaries of visible features in segmented images were traced to 26 

determine the intrinsic coordinates for the perimeter of the solid and damaged parts (Figure 2A–B). 27 

These sets were converted from intrinsic to Cartesian coordinates using the associated reference 28 
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object. Each set consisted of n clockwise-ordered coordinate pairs (xi, yi), {i | ∈ 1…n}, that 1 

collectively described a simple, closed curve enclosing a solid or damaged part.  2 

 3 

Numerical estimates 4 

Consistent with existing methods (Smiley et al. 2011), damaged wood parts were considered hollow, 5 

or missing, for the purposes of these calculations. Four parameters were computed for the individual 6 

shape(s) comprising each section, including the area, A (m2):  7 

 𝐴 = ∫ 𝑑𝐴; Eq. 7 8 

the first moment of area with respect to the y-axis, Ax (m3): 9 

 𝐴௫ = ∫ 𝑥 𝑑𝐴 Eq. 8 10 

the first moment of area with respect to the x-axis, Ay (m3): 11 

 𝐴௬ = ∫ 𝑦 𝑑𝐴; Eq. 9 12 

and the second moment of area with respect to the x-axis, Ixx (m4), as in Eq. 1: 13 

 𝐼௫௫ = ∫ 𝑦ଶ 𝑑𝐴. Eq. 10 14 

Green’s Theorem was used to reduce the formulas to a curve integral over the clockwise-ordered 15 

boundary coordinates enclosing each shape. See Steger (1996) for the complete derivation of the 16 

corresponding numerical formulas. Specifically, A was computed as:  17 

 𝐴 = 1/2 ∑ (𝑥௜𝑦௜ାଵ − 𝑥௜ାଵ𝑦௜)௡
௜ୀଵ , Eq. 11 18 

where (xi, yi), {i | ∈ 1…n}, are the coordinate pairs for a given shape; Ax was computed as: 19 

 𝐴௫ = 1/6 ∑ (𝑥௜ + 𝑥௜ାଵ)(𝑥௜𝑦௜ାଵ − 𝑥௜ାଵ𝑦௜)௡
௜ୀଵ ; Eq. 12 20 

Ay was computed as: 21 

 𝐴௬ = 1/6 ∑ (𝑦௜ + 𝑦௜ାଵ)(𝑥௜𝑦௜ାଵ − 𝑥௜ାଵ𝑦௜)௡
௜ୀଵ ; Eq. 13 22 

and Ixx was computed as: 23 

 𝐼௫௫ = 1/12 ∑ (𝑦௜
ଶ + 𝑦௜𝑦௜ାଵ + 𝑦௜ାଵ

ଶ )(𝑥௜𝑦௜ାଵ − 𝑥௜ାଵ𝑦௜)௡
௜ୀଵ . Eq. 14 24 

For small strains, the location of the neutral axis coincides with the shape’s centroidal axis, 𝑦ത (m), 25 

given by:  26 

 𝑦ത = 𝐴௬/𝐴. Eq. 15 27 
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The corresponding x-coordinate of each shape’s centroid was similarly determined as:  1 

 𝑥̅ = 𝐴௫/𝐴. Eq. 16 2 

For composite sections consisting of n smaller solid and hollow shapes, the centroid was determined 3 

as: 4 

 𝑦ത = ∑ 𝐴௬ೕ

௡
௝ୀଵ / ∑ 𝐴௝

௡
௝ୀଵ , Eq. 17 5 

where Ayj and Aj were multiplied by -1 if the jth shape represented a void. Similarly, the parallel axis 6 

theorem was used to determine Ixx for composite sections as:  7 

 𝐼௫௫ = ∑ (𝐼௫௫ೕ
+ 𝐴௝𝑐௝

ଶ)௡
௝ୀଵ , Eq. 18 8 

where cj is the perpendicular distance between the neutral axis of the composite section and the 9 

centroid of the jth smaller shape. Similarly, Ixxj and Aj were multiplied by -1 if the jth shape 10 

represented a void. Ultimately, Z was computed as: 11 

 𝑍 = 𝐼௫௫ 𝑦⁄ , Eq. 19 12 

where y is the maximum perpendicular distance between the section’s neutral axis and outermost 13 

trunk fibers. The reduction to Z for a hollow section, relative to a solid section with identical trunk 14 

geometry, was determined as a percent difference:  15 

 𝑍௅ைௌௌ = (𝑍ௌை௅ூ஽ − 𝑍ுை௅௅ைௐ) 𝑍ௌை௅ூ஽⁄ . Eq. 20 16 

After calculation, the estimates obtained for a given orientation were stored, and the analysis was 17 

repeated after incrementally rotating each set of coordinate pairs about the respective section’s 18 

centroidal coordinates by an arbitrarily small angle. Each coordinate pair was rotated counter-19 

clockwise about the z-axis using the following rotation matrix: 20 

 𝑅௭(𝛼) = ቂ
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

ቃ, Eq. 21 21 

where α (rad) is the incremental rotation angle. The complete rotation for each coordinate pair was 22 

achieved by the following matrix operation: 23 

 𝑨ᇱ = 𝑅௫(𝛼)(𝑨 − 𝑩) + 𝑩, Eq. 22 24 

where A is a vector in ℝ2 with elements [xi yi] and B is a similar vector composed of a given section’s 25 

centroidal coordinates. After each incremental rotation, identical calculations were performed to 26 

compute ZLOSS until the cumulative total rotation for a section equaled 2π rad. The preceding image 27 
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processing and numerical analysis steps were written as a MATLAB (MathWorks, Natick, MA, USA) 1 

function named zloss (Burcham 2017).  2 

 3 

In addition, several attributes of the solid and damaged parts displayed in tomograms and binary 4 

images were calculated. The percent of total damaged cross-sectional area, AD (%), was computed as:  5 

 𝐴஽ =
∑ 𝑎஽೔

௡
௜ୀଵ

𝐴ௌ
൘ , Eq. 23 6 

where aD is the area (m2) of ith damaged part and AS is the area (m2) enclosed by the trunk boundary, 7 

excluding the bark. The offset length, LO (m), between the centroid of the trunk and the centroid of the 8 

largest damaged part was determined using the distance formula:  9 

 𝐿ை = ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ, Eq. 24 10 

where (x1, y1) and (x2, y2), respectively, are the centroidal coordinates of the trunk and largest 11 

damaged part determined numerically using Eqs. 15 and 16. The roundness, R (dimensionless), of the 12 

trunk, RT, and largest damaged part, RD, was determined using: 13 

 𝑅 = 4𝐴
𝜋𝐿ଶൗ , Eq. 25 14 

where A is the area (m2), determined numerically using Eq. 11, and L (m) is the major axis of the 15 

shape, determined as the maximum distance between any two points on the boundary. The latter two 16 

attributes only considered the largest damaged part because existing analytical methods only 17 

explicitly consider one damaged area (Ciftci et al. 2014, Coder 1989, Smiley and Fraedrich 1992, 18 

Wagener 1963).  19 

 20 

Analytical estimates 21 

To compute analytical estimates of ZLOSS, two basic approaches described by Ciftci et al. (2014) were 22 

used to approximate irregular shapes as circles. Again, only the circular approximation of the largest 23 

damaged part in a tomogram was used in the associated ZLOSS calculations. For the first method 24 

(“Ciftci I”), the irregularly shaped trunk and largest damaged part were approximated using a 25 

minimum circumscribed circle, “Ciftci I(a);” maximum inscribed circle, “Ciftci I(b);” and the average 26 

of these two circles, “Ciftci I(c)”. The radius and centroidal coordinates of the minimum 27 
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circumscribed and maximum inscribed circles were determined using the MATLAB functions 1 

minboundcircle and incircle, respectively, from the matGeom library (Legland 2015). For the second 2 

method (“Ciftci II”), the radius of the circular equivalent of an irregular shape was calculated as:  3 

 𝑟 =  ට𝐴
𝜋ൗ , Eq. 26 4 

where A (m2) is the area of an irregular shape determined numerically using Eq. 11. To position the 5 

circular equivalent shape on the centroid of its irregular counterpart, the centroidal coordinates of the 6 

trunk and largest damaged part were determined numerically using Eqs. 15 and 16. The analytical 7 

estimates of ZLOSS were determined using these radii and centroidal coordinates; see Ciftci et al. 8 

(2014) for more information about the associated calculations. Since ILOSS = ZLOSS for a hollow circle, 9 

Eq. 2 was used, as employed by Coder (1989), to compute analytical estimates of ZLOSS. Likewise, Eq. 10 

3 proposed by Wagener (1963) was used to compute analytical estimates, not strictly ZLOSS, for 11 

comparison with other available methods. For Eqs. 2 (“Coder”) and 3 (“Wagener), the radius of the 12 

circular equivalent of an irregular shape, determined using Eq. 26, was used to calculate ZLOSS. 13 

 14 

Statistical analysis 15 

Three coefficients were computed to examine the accuracy of tomograms at depicting internal 16 

conditions, in terms of the size, position, and shape of damaged parts. Pearson’s product-moment 17 

correlation (r) and Spearman’s rank-order correlation (ρ) were computed to measure the strength of a 18 

general linear relationship of the form y = ax + b between features estimated from tomograms and 19 

destructive measurements, including AD, LO, RT, RD, and their rank-order counterparts. Lin’s 20 

concordance coefficient (pc) was computed to measure the strength of a linear relationship of the form 21 

y = x (i.e., 1:1 similarity) between the same datasets. Cook’s D, measured during regression, was used 22 

to identify potential outliers in each comparison, with cases exerting influence greater than 4/n 23 

inspected more closely (Marasinghe and Kennedy 2008).  24 

 25 

In addition, two linear models were fit to the error associated with various approaches to estimating 26 

ZLOSS from sonic tomograms relative to the same computed numerically from binary images. Since 27 
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ZLOSS computed numerically from binary images was based on destructive measurements and 1 

accommodated the most geometric detail, it was assumed that it provided the best available 2 

approximation of the actual ZLOSS for a measured section and offered a useful standard to distinguish 3 

among other methods based on SoT. First, analysis of variance (ANOVA) was used to test the effect 4 

of the mathematical methods and colors used to select damaged wood parts on the absolute difference 5 

(%) between maximum ZLOSS determined using sonic tomograms and binary images. The fixed effects 6 

included mathematical methods used to estimate ZLOSS: Ciftci I(a), Ciftci I(b), Ciftci I(c), Ciftci II, 7 

Coder, zloss, and Wagener; colors used to select damaged wood parts in sonic tomograms: violet and 8 

blue (VB) and green, violet, and blue (GVB); and their interaction: methods × colors. For significant 9 

fixed effects, mean separation was performed using Tukey’s honestly significant difference.  10 

 11 

Second, analysis of covariance was used to test the effect of the mathematical methods on the absolute 12 

difference (%) between maximum ZLOSS determined using tomograms and binary images, after 13 

accounting for geometric features of cross sections. In total, eight covariates were tested for inclusion 14 

in the model: AD, AD(error), LO, LO(error), RT, RT(error), RD, and RD(error). The covariates were 15 

computed from binary images of each section as described in Eqs. 23‒26, and the error associated 16 

with each covariate was determined as the absolute difference between the estimate from tomograms 17 

and binary images. Since AD represented the percent of total damaged area, the fixed effect for colors 18 

was removed from this model. The form of the model was determined by iteratively testing the 19 

significance of a simple linear relationship between each covariate and the absolute difference (%) 20 

between maximum ZLOSS determined using tomograms and binary images. The validity of statistical 21 

assumptions for linear regression was checked by testing the normality of observations and 22 

homoscedasticity, respectively, with the Kolmogorov-Smirnov statistic and the Spearman rank 23 

correlation between absolute studentized residuals and observations of the dependent variable (Kutner 24 

et al. 2004). For each of the selected covariates, the homogeneity of slopes among levels of the fixed 25 

effect was tested and, if rejected, an unequal slopes model was fit for the associated covariate. For 26 

significant fixed effects, mean separation was performed using Tukey’s honestly significant 27 

difference at multiple values of each covariate. Statistical analyses were performed using SAS 9.4 28 
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(SAS Institute, Inc., Cary, NC, USA); the ANOVA and ANCOVA models were fit using proc glm, 1 

and pc was computed using the CCC macro v9 (Crawford et al. 2007).  2 

 3 

Results 4 

AD, the percent of total damaged cross-sectional area measured in sonic tomograms, was mostly less 5 

than binary images, but the difference was smaller when using GVB to select damaged parts in 6 

tomograms. On average, AD measured in tomograms was 25% and 14%, respectively, less than binary 7 

images when using VB or GVB to select damaged parts. Significant correlations between AD 8 

measured in tomograms and binary images indicated that the size of damaged parts in tomograms was 9 

proportional to their actual size in binary images, but the difference in pc showed that AD computed 10 

using GVB was closer to the actual AD in binary images (Table 2). For one yellow birch (Betula 11 

alleghaniensis) section 160 cm above ground (YB04–160), AD measured using GVB was 12 

overpredicted by 23%, and this value was a distinct outlier (D = 2.12) because of the 13 

disproportionately large green area in the associated tomogram. Excluding this outlier, regression 14 

indicated significant linear relationships between AD measured from tomograms and binary images 15 

using GV (p < 0.001) and GVB (p < 0.001) (Table 3). For these functions, coefficients of 16 

determination indicated that AD measured from tomograms using GV (r2 = 0.54) and GVB (r2 = 0.59) 17 

accounted for considerable variation in AD measured from binary images, suggesting that the repeated 18 

underestimation of AD in the examined cross sections was reasonably predictable (Figure 3).  19 

 20 

In contrast, LO measured in sonic tomograms was mostly greater than in binary images, but the 21 

measurements differed less when using GVB to select damaged parts in tomograms. On average, LO 22 

measured in tomograms was 4.4 cm and 3.2 cm, respectively, greater than binary images when using 23 

GV or GVB to select damaged parts. Significant correlations between LO measured in tomograms and 24 

binary images indicated that the position of damaged parts in tomograms was proportional to their 25 

actual position in binary images, but the difference in pc showed that LO computed using GVB was 26 

closer to the actual LO in binary images (Table 2). For one yellow birch cross section 100 cm above 27 

ground (YB05–100), LO measured using VB was overpredicted by 26.3 cm. This value was a distinct 28 
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outlier (D = 2.11) because the largest damaged part was depicted near the trunk periphery in the 1 

tomogram – a considerable distance from the largest damaged part at the center of the cross section in 2 

the corresponding binary image. Excluding this outlier, regression indicated significant linear 3 

relationships between LO measured from tomograms and binary images using GV (p < 0.001) and 4 

GVB (p < 0.001) (Table 3). For these functions, coefficients of determination indicated that LO 5 

measured from tomograms using GV (r2 = 0.62) and GVB (r2 = 0.56) accounted for considerable 6 

variation in LO measured from binary images, suggesting that the repeated overestimation of LO in the 7 

examined cross sections was reasonably predictable (Figure 4). For these regression functions, the 8 

intercept was not significantly different from zero when using GV (p = 0.736) or GVB (p = 0.927) to 9 

select damaged parts in tomograms, indicating that the overestimation of LO in tomograms increased 10 

in proportion to the actual LO in binary images (Figure 4). 11 

 12 

On average, RT for sonic tomograms (mean = 0.850) and binary images (mean = 0.841) was greater 13 

than RD measured in binary images (mean = 0.570) and tomograms using GV (mean = 0.512) or GVB 14 

(mean = 0.570), indicating that a circle better approximated the shape of trunks than damaged parts 15 

for this set of trees. Among all geometric features examined in this study, r, ρ, and pc were the greatest 16 

for RT measured in tomograms and binary images, indicating that RT depicted in tomograms was very 17 

similar to the actual RT in binary images (Table 2). Regression indicated a significant linear 18 

relationship between RT measured from tomograms and binary images (p < 0.001) with a high 19 

coefficient of determination (r2 = 0.66) (Table 3, Figure 5).  20 

 21 

In contrast, the shape of damaged parts in binary images, measured in terms of RD, was poorly 22 

depicted in sonic tomograms, and this was especially true for damaged parts selected using only VB. 23 

Among all geometric features examined in this study, r, ρ, and pc were the lowest for RD measured in 24 

tomograms and binary images, implying greater dissimilarity between the RD measured using the two 25 

images. Regression indicated a significant linear relationship only between RD measured in 26 

tomograms and binary images using GVB (p < 0.001); and the associated coefficients of 27 
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determination indicated that RD determined using GV (r2 = 0.05) and GVB (r2 = 0.25) in tomograms 1 

accounted for little variation in RD measured from binary images (Table 3).  2 

 3 

Analysis of variance indicated that the mathematical methods and colors used to select damaged parts 4 

significantly affected the absolute difference (%) between ZLOSS determined using tomograms and 5 

binary images, but these two factors did not interact to affect the absolute difference between ZLOSS 6 

determined using the two image types (Table 4). Overall, the absolute difference (%) between ZLOSS 7 

determined using tomograms and binary images was significantly less for estimates using GVB to 8 

select damaged parts than for others using VB. Overall, the average absolute difference in ZLOSS was 9 

6% less for estimates using GVB compared to others using only VB. Among mathematical methods, 10 

pairwise comparisons revealed that the absolute difference between ZLOSS determined using 11 

tomograms and binary images was significantly greater for analytical methods neglecting the position 12 

of damaged parts (i.e., Coder and Wagener). Overall, the error associated with these estimates was 13 

between 5% and 9% greater than for other methods, which did not differ significantly from one 14 

another (Table 4).  15 

 16 

In terms of the actual difference between ZLOSS determined using tomograms and binary images, all 17 

mathematical methods underestimated ZLOSS in most cases. For Coder and Wagener, respectively, 18 

ZLOSS determined using tomograms was, on average, 25% and 21% less than determined numerically 19 

using binary images; these two methods underestimated ZLOSS in 98% of all cases. For the remaining 20 

methods, the average actual difference was smaller, but the estimates determined using tomograms 21 

were still less than determined numerically using binary images in most cases. Among these methods, 22 

the average actual difference between ZLOSS determined using tomograms and binary images was, in 23 

decreasing order: Ciftci I(b), 14%; Ciftci II, 11%; Ciftci I(c), 9%; zloss, 9%; Ciftci I(a), 4%.  24 

 25 

Among all tested covariates, LO (F = 26.72; df = 7, 658; p < 0.001) and AD(error) (F = 17.68; df = 7, 26 

658; p < 0.001) were selected as the only variables showing a significant linear relationship with the 27 

absolute difference between ZLOSS determined using tomograms and binary images. Although the 28 
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slopes describing the change in the absolute difference between ZLOSS determined using tomograms 1 

and binary images over a unit change in LO varied significantly among mathematical methods (F = 2 

4.95; df = 6, 658; p < 0.001), the same was not true for the slopes describing the change in this 3 

difference over a unit change in AD(error) (F = 1.17; df = 6, 658; p = 0.322). As a result, a common 4 

slope was used to describe the relationship between AD(error) and the absolute difference between 5 

ZLOSS determined using tomograms and binary images for all mathematical methods, and unequal 6 

slopes were fit to describe the relationship between LO and the absolute difference between ZLOSS 7 

determined using tomograms and binary images for each mathematical method individually. Using 8 

this model, analysis of covariance revealed that mathematical methods significantly affected the 9 

absolute difference between ZLOSS determined using tomograms and binary images, after accounting 10 

for LO and AD(error). Except for Coder, the intercepts associated with each method were not 11 

significantly different from zero, indicating that the absolute difference between ZLOSS determined 12 

using tomograms and binary images is minimized to effectively zero for most mathematical methods 13 

when the largest damaged part is concentric and AD is depicted accurately in tomograms. Except for 14 

zloss, all the slopes describing the relationship between LO and the absolute difference between ZLOSS 15 

determined using tomograms and binary images were significantly different from zero, indicating 16 

that, among all methods, the numerical approach was the least sensitive to changes in LO (Table 5).  17 

 18 

Mean separation, performed at six combinations of the two covariates selected to represent the 19 

observed range of AD(error) and LO revealed that differences among mathematical methods existed 20 

only for LO > 0. At AD(error) = 0 and LO = 0, there were no significant differences in the absolute 21 

difference between ZLOSS determined using tomograms and binary images among mathematical 22 

methods, and there were similarly no significant differences among methods at AD(error) = 0.4 and LO 23 

= 0, since a common slope was fit to all observations of AD(error) and the absolute difference between 24 

ZLOSS determined using tomograms and binary images. For all mathematical methods, the absolute 25 

difference between ZLOSS determined using tomograms and binary images increased by 46% over a 26 

unit change in AD(error) (note that the possible range for AD(error) is [0, 1]). However, consistent 27 

differences arose among mathematical methods for LO > 0, owing to the different slopes fit to 28 
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observations of LO and the absolute difference between ZLOSS determined using tomograms and binary 1 

images for each method separately (Table 5). For these cases, the absolute difference between ZLOSS 2 

determined using tomograms and binary images was greatest for Coder and Wagener, since these 3 

methods neglected LO. The remaining methods, in decreasing order of the absolute difference between 4 

ZLOSS determined using tomograms and binary images, were: Ciftci I(b), Ciftci II, Ciftci I(c), Ciftci 5 

I(a), and zloss (Table 6).  6 

 7 

Discussion 8 

For decayed sections, most authors similarly observed that AD was underestimated in sonic 9 

tomograms in a range of tree species (Deflorio et al. 2008, Gilbert and Smiley 2004, Liang et al. 2007, 10 

Liang and Fu 2012, Marra et al. 2018, Wang et al. 2007, Wang et al. 2009). In agreement with these 11 

findings, Wang et al. (2009) also reported that the average difference between AD determined using 12 

sonic tomograms and destructive measurements was greater when using VB (mean = 14%) than GVB 13 

(mean = 2%) to select damaged parts. In other reports, authors only used two colors to select damaged 14 

parts in sonic tomograms, and the reported average underestimation of AD ranged between < 1% 15 

(Ostrovsky et al. 2017) and 14% (Wang et al. 2009). However, some authors computed AD using 16 

coarse grid systems with cell dimensions ranging between 5 mm (Gilbert and Smiley 2004) and 12.5 17 

mm (Ostrovsky et al. 2017), contributing unknown error to the approximation.  18 

 19 

It is possible that the underestimation of AD arises from the reduced sensitivity of sonic tomography to 20 

low velocity features (Li et al. 2012) that limits the detection of incipient decay (Deflorio et al. 2008), 21 

and practitioners should account for this limitation when interpreting tomograms, especially in light of 22 

the consensus among related studies. Others have reported, in agreement with this study, a strong 23 

linear relationship between AD determined using tomograms and destructive measurements (Gilbert 24 

and Smiley 2004, Liang and Fu 2012). In a sample of 15 decayed sections, Liang and Fu (2012) 25 

reported much better agreement between AD determined using sonic tomograms and destructive 26 

measurements; the slope of a linear model fit to these observations was much closer to one than in this 27 

study, with a high coefficient of determination (r2 = 0.94) despite using only VB to select damaged 28 
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parts. Although Gilbert and Smiley (2004) also reported a strong linear relationship between the 1 

amount of decay depicted in tomograms and measured on images of decayed cross sections (r2 = 2 

0.94), the authors did not fit a linear regression model to the observations, precluding a comparison of 3 

model coefficients. Compared to existing reports, there was a greater underestimation of AD in sonic 4 

tomograms in this study. Still, practitioners should use caution when considering the use of regression 5 

models from this study to adjust tomographic estimates because the underlying observations were 6 

limited to three species at a single site. Although our sample of decayed sections was relatively large, 7 

it will be important to examine further the relationship between AD determined using tomograms and 8 

destructive measurements across several sites and species in future work.  9 

 10 

Conversely, most existing reports indicated that AD was overestimated in sonic tomograms for 11 

sections with internal cracks (Liang et al. 2007, Wang et al. 2009, Wang and Allison 2008). In this 12 

study, only one of the examined sections (SM05–100) contained a crack, but it occurred alongside 13 

internal decay, preventing a separate evaluation of this type of defect. Without adjustment, this means 14 

that ZLOSS determined using tomograms would tend to be liberal and conservative for cracks and 15 

decay, respectively, and practitioners should consider these trends when computing ZLOSS from 16 

tomograms. Future studies should examine the accuracy of tomograms, in terms of AD, for each type 17 

of defect separately, taking care to separate those cracks present during tomographic measurement 18 

from others created by drying after felling.  19 

 20 

Among related studies, this is the first report of a repeated overestimation of LO in sonic tomograms. 21 

In a sample of 17 decayed sections, Gilbert and Smiley (2004) observed that, in terms of the location 22 

of damaged parts, 2% and 9% of AD were false-positive and -negative estimates that did not match the 23 

internal condition of sections. However, LO is arguably a better feature to examine, in terms of ZLOSS, 24 

because damaged parts decrease I proportional to the square of this distance (Eq. 18). The observed 25 

repeated overestimation of LO in sonic tomograms should contribute to an equivalent overestimation 26 

of ZLOSS, proportional to AD (Eq. 18). Like AD, the difference between LO determined using tomograms 27 

and binary images was greater when using VB than GVB to select damaged parts, further justifying 28 
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the addition of color(s) representing intermediate acoustic transmission speeds when analyzing 1 

tomograms, despite its usual omission by the manufacturer’s software.  2 

 3 

The accuracy of ZLOSS estimates improved when using GVB to select damaged parts, corroborating the 4 

direct comparisons between geometric attributes in this study and other reports that these colors 5 

should be used to select damaged parts (Marra et al. 2018, Wang et al. 2009). Among the evaluated 6 

methods, the difference between ZLOSS determined using tomograms and binary images for Coder and 7 

Wagener was significantly greater than all other methods. Considering this difference, practitioners 8 

should avoid using methods neglecting LO to estimate ZLOSS, in agreement with Kane and Ryan 9 

(2004). Although Liang and Fu (2012) reported a much smaller difference between strength-loss 10 

estimates determined using tomograms and destructive measurements, the reported difference was 11 

determined only by the accuracy of tomograms because the same method was applied to tomograms 12 

and destructive measurements in each case. In this study, the methods used to estimate ZLOSS from 13 

tomograms were compared with an improved numerical method, zloss, applied to binary images.  14 

 15 

The difference between ZLOSS determined using tomograms and binary images did not vary with RT or 16 

RD, supporting the use of circles to approximate irregular shapes by existing analytical methods 17 

(Ciftci et al. 2014, Coder 1989, Smiley and Fraedrich 1992, Wagener 1963). However, some authors 18 

have reported that AD(error) ∝ R-1 (Gilbert et al. 2016, Rabe et al. 2004, Rust 2017), and the use of 19 

circles for highly irregular trunk shapes may be less appropriate in these situations. The selection of 20 

AD(error) and LO as covariates means that the accuracy of ZLOSS estimates was primarily affected by 21 

the underestimation of AD in tomograms and the actual LO of the largest damaged part. Based on this 22 

analysis, it is apparent that the value of a method, relative to others examined in this study, depends 23 

largely on its consideration and approach to LO; all methods were similarly affected by the 24 

underestimation of AD in sonic tomograms. After accounting for AD(error) and LO, the consistent 25 

ranking among methods used to estimate ZLOSS, caused by the unequal slopes fit to each method for 26 

LO, usefully revealed methods that should be considered for greater use by arborists. Uniquely, the 27 

slope fit to zloss was not significantly different from zero, and the absolute difference between ZLOSS 28 
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determined using tomograms and binary images was lowest for this method at all selected values of 1 

the covariates. As a result, the accuracy of this method was mostly determined by the error in 2 

estimating AD, and this provides justification for using this method as a benchmark, since it was least 3 

sensitive to changes in LO.  4 

 5 

Among the remaining analytical methods proposed by Ciftci et al. (2014), Ciftci I(a) and I(c) gave 6 

better estimates, in terms of the absolute difference between ZLOSS determined using tomograms and 7 

binary images, than Ciftci II and I(b). The former two methods relied, in whole or part, on 8 

circumscribed circles fit to the trunk and largest damaged part. Since RT > RD for the examined 9 

sections, the circumscribed circles enlarged the area of damaged parts (mean: +86%) more than trunks 10 

(mean: +19%), relative to their corresponding area in tomograms, resulting in an average increase to 11 

AD of 7.5% and 2.5%, respectively, for Ciftci I(a) and I(c). The increased AD usefully offset its 12 

underestimation in tomograms, explaining the improved estimates offered by these two methods. 13 

Notably, solutions were available in all cases using Ciftci I(a), but the same was not true for all cases 14 

using other methods. For example, ZLOSS could not be estimated using Ciftci I(b), I(c), and II for one 15 

sugar maple cross section 80 cm above ground (SM28–080) because the damaged part was 16 

completely outside and did not intersect the solid trunk. Although Ciftci I(a) offered relatively 17 

superior estimates among analytical methods proposed by Ciftci et al. (2014), it is useful to note that 18 

these methods are not strictly analytical because they require image processing techniques, limiting 19 

their usefulness to practitioners.  20 

 21 

Despite considering only the largest damaged part, the analytical estimates differed modestly from the 22 

numerical estimate computed from binary images in most cases. On average, the percent of total area 23 

occupied by the largest damaged part was 11% (SD 16%) less than AD. Still, the analytical methods 24 

gave sizeable underestimates of ZLOSS in some cases because they neglected to consider one or more 25 

additional damaged parts. In one American beech section 60 cm above ground (AB06–060), the 26 

largest damaged part was in the center of the section, but the analytical estimate omitted the 27 
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contributions from the second largest damaged part at the trunk periphery, causing ZLOSS to be 1 

underestimated by, on average, 16% among the six analytical methods.  2 

 3 

The PiCUS Q74 software, like other sonic tomography devices, provides a built-in function to give an 4 

approximate estimate of the percent residual load-bearing capacity (Gocke 2017) equal to: 5 

 𝐼ௗ௨ 𝐼஽௨⁄ × 100, Eq. 27 6 

where Idu and IDu are the second moments of area computed about the section’s centroid using the 7 

diameter of the damaged part (d) and trunk (D). To determine these diameters, the software requires 8 

users to select the boundary between damaged and solid wood, and it computes the lengths along a 9 

radius formed by the centroid and user-selected location (A. Richter, personal communication). This 10 

excludes considerable information in the tomogram from the estimate. Since Eq.  27 corresponds to 1 11 

− Eq. 2, its performance can be considered equivalent to that ascribed to Coder in this study. 12 

Practitioners are cautioned against using this built-in function when eccentric decay is present because 13 

Kane and Ryan (2004) demonstrated that Eq. 2 performed poorly in these cases.  14 

 15 

It is possible that the image binarization process used in this study introduced unknown error into the 16 

ZLOSS estimates derived from binary images. Although the existence of damaged wood was obvious in 17 

most of the examined sections, error may have occurred in determining the precise boundary between 18 

damaged and solid wood. In the future, authors should consider alternative methods to binarize 19 

images for ZLOSS estimates. Likewise, the assumption of material isotropy may have introduced 20 

negligible error into the ZLOSS estimates (Ciftci et al. 2014), and authors should consider these effects, 21 

when relevant material properties information is available, in future work.  22 

 23 

Conclusion 24 

Among the evaluated methods, ZLOSS was best estimated using sonic tomograms numerically with 25 

zloss or analytically with Ciftci I(a), and practitioners should consider using these methods to assess 26 

the severity of internal defects measured with sonic tomography. The numerical method zloss 27 

addressed the simplifying assumptions contained in many existing methods by accommodating more 28 
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geometric detail in the associated calculations, including irregular shapes and multiple offset damaged 1 

parts. Still, the repeated under- and overestimation, respectively, of AD and LO in tomograms limits the 2 

accuracy of ZLOSS estimates based on tomography, and these limitations should be considered when 3 

interpreting estimates. It is important to note that ZLOSS only estimates the reduced load-bearing 4 

capacity of the measured tree part (not the entire tree). Even more, the methods described in this 5 

article do not estimate the probability of tree failure, which requires a more thorough accounting of 6 

the total applied and resistive forces acting on a tree. There is little scientific consensus on a threshold 7 

value associated with a change in the likelihood of failure (Gruber 2008), but Kane (2014) showed 8 

that failure at an area with existing or simulated decay was more likely when ILOSS > 30%.  9 

 10 

Literature cited 11 

Arciniegas A, Prieto F, Brancheriau L, Lasaygues P (2014) Literature review of acoustic and 12 
ultrasonic tomography in standing trees. Trees 28:1559-1567 13 

Brazee NJ, Marra RE, Gocke L, Van Wassenaer P (2011) Non-destructive assessment of internal 14 
decay in three hardwood species of northeastern North America using sonic and electrical 15 
impedance tomography. Forestry 84:33-39 16 

Burcham DC (2017) zloss. GitHub, version 1.1 https://github.com/danielburcham/zloss 17 

Ciftci C, Kane B, Brena SF, Arwade SR (2014) Loss in moment capacity of tree stems induced by 18 
decay. Trees 28:517-529 19 

Coder KD (1989) Should or shouldn't you fill tree hollows?. Grounds Maint 24:68-70, 72-73, 100 20 

Crawford SB, Kosinski AS, Lin HM, Williamson JM, Barnhart HX (2007) Computer programs for 21 
the concordance correlation coefficient. Comput Methods Programs Biomed 88:62-74 22 

Deflorio G, Fink S, Schwarze FWMR (2008) Detection of incipient decay in tree stems with sonic 23 
tomography after wounding and fungal inoculation. Wood Sci Technol 42:117-132 24 

Ennos AR (2012) Solid Biomechanics. Princeton University Press, Princeton, NJ, USA 25 

Gilbert EA, Smiley ET (2004) Picus sonic tomography for the quantification of decay in white oak 26 
(Quercus alba) and hickory (Carya spp.). J Arboric 30:277-281 27 

Gilbert GS, Ballesteros JO, Barrios-Rodriguez CA, Bonadies EF, Cedeno-Sanchez ML, Fossatti-28 
Caballero NJ, Trejos-Rodriguez MM, Perez-Suniga JM, Holub-Young KS, Henn LAW, 29 
Thompson JB, Garcia-Lopez CG, Romo AC, Johnston DC, Barrick PP, Jordan FA, Hershcovich 30 
S, Russo N, Sanchez JD, Fabrega JP, Lumpkin R, McWilliams HA, Chester KN, Burgos AC, 31 
Wong EB, Diab JH, Renteria SA, Harrower JT, Hooton DA, Glenn TC, Faircloth BC, Hubbell 32 
SP (2016) Use of sonic tomography to detect and quantify wood decay in living trees. Appl Plant 33 
Sci 4:1-13 34 



 

 23

Gocke L (2017) PiCUS Sonic Tomograph: Software Manual Q74:1-92 1 

Gruber F (2008) Reply to the response of Claus Mattheck and Klaus Bethge to my criticisms on 2 
untenable VTA-failure criteria. Who is right and who is wrong?. Arboric J 31:277-296 3 

Johnstone D, Moore G, Tausz M, Nicolas M (2010) The measurement of wood decay in landscape 4 
trees. Arboric Urban For 36:121-127 5 

Kane B (2014) Determining parameters related to the likelihood of failure of red oak (Quercus rubra 6 
L.) from winching tests. Trees 28:1667-1677 7 

Kane B, Ryan HDP (2004) The accuracy of formulas used to assess strength loss due to decay in 8 
trees. J Arboric 30:347-356 9 

Kane B, Ryan HDP, Bloniarz DV (2001) Comparing formulae that assess strength loss due to decay 10 
in trees. J Arboric 27:78-87 11 

Koizumi A, Hirai T (2006) Evaluation of the section modulus for tree-stem cross sections of irregular 12 
shape. J Wood Sci 52:213-219 13 

Kutner MH, Nachtsheim CJ, Neter J (2004) Applied Linear Regression Models. McGraw-Hill Irwin, 14 
Boston, MA, USA 15 

Legland D (2015) matGeom. GitHub, https://github.com/mattools/matGeom/ 16 

Li L, Wang X, Wang L, Allison RB (2012) Acoustic tomography in relation to 2D ultrasonic velocity 17 
and hardness mappings. Wood Sci Technol 46:551-561 18 

Liang S, Fu F (2012) Strength loss and hazard assessment of Euphrates poplar using stress wave 19 
tomography. Wood Fiber Sci 44:1-9 20 

Liang S, Wang X, Wiedenbeck J, Cai Z, Fu F (2007) Evaluation of acoustic tomography for tree 21 
decay detection. 15th International Symposium on Nondestructive Testing of Wood Duluth, MN, 22 
USA, pp 49-54 23 

Marasinghe MG, Kennedy WJ (2008) SAS for Data Analysis: Intermediate Statistical Methods. In: 24 
Chambers J, Hardle W, Hand D (eds) Statistics and Computing. Springer, New York, NY, USA, 25 
pp 557 26 

Marra RE, Brazee N, Fraver S (2018) Estimating carbon loss due to internal decay in living trees 27 
using tomography: implications for forest carbon budgets. Environ Res Lett 13:105004 28 

Niklas KJ (1992) Plant Biomechanics: An Engineering Approach to Plant Form and Function. 29 
University of Chicago Press, Chicago, IL, USA 30 

Ostrovsky R, Kobza M, Gazo J (2017) Extensively damaged trees tested with acoustic tomography 31 
considering tree stability in urban greenery. Trees 31:1015-1023 32 

Rabe C, Ferner D, Fink S, Schwarze FWMR (2004) Detection of decay in trees with stress waves and 33 
interpretation of acoustic tomograms. Arboric J 28:3-19 34 

Rust S (2017) Accuracy and reproducibility of acoustic tomography significantly increase with 35 
precision of sensor position. J Forest Landscape Res 1:1-6 36 



 

 24

Smiley ET, Matheny N, Lilly S (2011) Tree Risk Assessment. International Society of Arboriculture, 1 
Champaign, IL, USA 2 

Smiley ET, Fraedrich BR (1992) Determining strength loss from decay. J Arboric 18:201-204 3 

Steger C (1996) On the calculation of moments of polygons. Munich, Germany, Technical University 4 
of Munich, FGBV-96-04, pp 1-14 5 

Wagener WW (1963) Judging Hazard from Native Trees in California Recreational Areas: A Guide 6 
for Professional Foresters. Berkeley, CA, USA, Pacific Southwest Forest and Range Experiment 7 
Station, Forest Service, US Department of Agriculture, PSW-P1, pp 1-29 8 

Wang X, Wiedenbeck J, Liang S (2009) Acoustic tomography for decay detection in black cherry 9 
trees. Wood Fiber Sci 41:127-137 10 

Wang X, Allison RB, Wang L, Ross RJ (2007) Acoustic tomography for decay detection in red oak 11 
trees. Madison, WI, USA, Forest Products Laboratory, Forest Service, US Department of 12 
Agriculture, FPL-RP-642, pp 1-7 13 

Wang X, Allison RB (2008) Decay detection in red oak trees using a combination of visual 14 
inspection, acoustic testing, and resistance microdrilling. Arboric Urban For 34:1-4 15 

 16 



 

 25

A  B  1 

C          D  2 
Figure 1: For each trunk cross section, three images were used for analysis, including a geometry file 3 
showing the blue trunk boundary line (A), a sonic tomogram showing the visualized decay pattern 4 
(B), and a photograph of the destructively harvested cross section (C). The reference photograph was 5 
used to produce a binary image (D), in which black (0) and white (1), respectively, represent damaged 6 
and solid parts. This set of images depicts the internal trunk condition of one American beech (Fagus 7 
grandifolia) 50 cm above ground (AB07–050).  8 

 9 
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A B  1 

C D  2 
Figure 2: Using specific ranges in the HSV and LAB color space, respectively, sonic tomograms were 3 
segmented to acquire the boundary of solid (A: dashed black line) and damaged (B: solid white lines) 4 
parts. For a given orientation, the perimeters of shapes comprising each hollow section were used to 5 
determine several features, including the neutral axis (C: dashed horizontal line), centroid (C: solid 6 
dot), and the outermost trunk fibers oriented perpendicular to the neutral axis (C: solid horizontal 7 
lines). The ZLOSS estimates are displayed as color intensity values on a circular annulus surrounding an 8 
outline of each hollow section (D). The red, green, blue continuous color scale represents directional 9 
ZLOSS between the minimum and maximum value for a given cross section.  10 

 11 
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 1 
Figure 3: Scatter plot of the percent of total damaged cross-sectional area, AD (%), measured in sonic 2 
tomograms against AD measured in a reference binary image of the destructively measured internal 3 
condition of trees. For the estimates derived from tomograms, damaged parts were selected using 4 
either green, violet, and blue (GVB, circle) or violet and blue (VB, plus). Most values are located 5 
above the solid black 1:1 comparison line, indicating a repeated underestimation of AD in tomograms 6 
relative to binary images. In contrast, AD measured using GVB for one yellow birch (Betula 7 
alleghaniensis) trunk 160 cm above ground (labeled YB04–160) was overpredicted by 23%, a distinct 8 
outlier. Least squares regression equations are y = 0.22 + 1.27x (blue, long dash line) and y = 0.16 + 9 
0.92x (blue, short dash line) for AD computed using VB and GVB, respectively. See Table 3 for model 10 
parameter estimates and fit statistics. 11 

 12 
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 1 
Figure 4: Scatter plot of the offset length, LO (m), measured in sonic tomograms against LO measured 2 
in a reference binary image of the destructively measured internal condition of trees. For the estimates 3 
derived from tomograms, damaged parts were selected using either green, violet, and blue (GVB, 4 
circle) or violet and blue (VB, plus). Most values are located below the solid black 1:1 comparison 5 
line, indicating a repeated overestimation of LO in tomograms relative to binary images. Uniquely, LO 6 
measured using two colors for one yellow birch (Betula alleghaniensis) trunk 100 cm above ground 7 
(labeled YB05–100) was overpredicted by 26.3 cm, a distinct outlier. Least squares regression 8 
equations are y = 6.59×10-4 + 0.60x (blue, long dash line) and y = 2.18×10-3 + 0.52x (blue, short dash 9 
line) for LO computed using VB and GVB, respectively. See Table 3 for model parameter estimates 10 
and fit statistics. 11 

 12 
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 1 
Figure 5: Scatter plot of the roundness, R (dimensionless), of the largest damaged part, RD, and trunk, 2 
RT, measured in sonic tomograms against the same measured in a binary image of the destructively 3 
measured internal condition of trees. For the estimates derived from tomograms, RD was determined 4 
using either green, violet, and blue (GVB, circle) or violet and blue (VB, plus); RT

 was computed 5 
using the blue trunk geometry line (triangle). Least squares regression equations are y = 0.47 + 0.22x 6 
(blue, long dash line) and y = 0.20 + 0.75x (blue, short dash line) for RD computed using VB and 7 
GVB, respectively; the equation for RT is y = 0.20 + 0.75x (blue, solid line). See Table 3 for model 8 
parameter estimates and fit statistics. 9 

 10 
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Table 1: Histogram thresholds used to select specific ranges in the HSV and LAB color space, 1 
respectively, associated with solid and damaged parts in sonic tomograms 2 
 Geometry  Sonic tomogram 
Color(s) Blue  Green, violet, 

blue (GVB)a 
Violet, blue 
(VB) 

Color Space HSV  LAB LAB 
Component 1 [0.01, 0.78]b  [20.92, 100.00] [0.00, 100.00] 
Component 2 [0.16, 1.00]  [-26.90, 81.98] [-68.60, -10.46] 
Component 3 [0.00, 1.00]  [-63.54, -3.78] [-99.92, 62.94] 

aFor each sonic tomogram, either violet and blue (VB) or green, violet, and blue (GVB) was used to 3 
select damaged parts. In a PiCUS® sonic tomogram, the four colors used to visualize sonic velocities 4 
and the corresponding internal wood condition are as follows: brown, solid; green, intermediate; 5 
violet, damaged; and blue, damaged.  6 
bThe ranges for each color component are expressed using interval notation. 7 

 8 
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Table 2: For a set of 51 trunk cross sections, Pearson’s product-moment correlation (r), Spearman’s 1 
rank-order correlation (ρ), and Lin’s concordance correlation (pc) between geometric attributes 2 
derived from sonic tomograms and binary images of the destructively measured internal condition of 3 
trees. 4 
AD (%) r ρ pc 
VBb 0.74** 0.80** 0.16 
GVB 0.71** 0.77** 0.44 
LO (m)    
VB 0.64** 0.64** 0.41 
GVB 0.70** 0.68** 0.53 
RT    
- 0.82** 0.83** 0.81 
RD    
VB 0.22 0.26 0.20 
GVB 0.55** 0.54** 0.53 

Geometric attributes include AD (%), the percent of total damaged cross-sectional area; LO (m), the 5 
offset length between the centroid of the trunk and the centroid of the largest damaged part; and R 6 
(dimensionless), the roundness of the trunk, RT, and largest damaged part, RD.  7 
bFor each sonic tomogram, either violet and blue (VB) or green, violet, and blue (GVB) was used to 8 
select damaged parts. In a PiCUS® sonic tomogram, the four colors used to visualize acoustic 9 
transmission speeds and the corresponding internal wood condition are as follows: brown, solid; 10 
green, intermediate; violet, damaged; and blue, damaged.  11 
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Table 3: Parameter estimates, confidence intervals, and coefficients of determination for linear 1 
regression models fit to geometric attributes derived from sonic tomograms and binary images of the 2 
destructively measured internal condition of trees. 3 
AD (%) b (95% CI) p a (95% CI) p r2 
VBb 0.22 (0.18−0.26) < 0.001 1.27 (0.94−1.61) < 0.001 0.55 
GVB 0.16 (0.11−0.21) < 0.001 0.92 (0.70−1.14) < 0.001 0.59 
LO (m)      
VB 2.18×10-3 (-1.08−1.52)×10-2 0.736 0.52 (0.39−0.64) < 0.001 0.62 
GVB 6.59×10-4 (-1.37−1.50)×10-2 0.927 0.60 (0.44−0.76) < 0.001 0.56 
RT      
- 0.20 (0.07−0.33) 0.003 0.75 (0.60−0.90) < 0.001 0.66 
RD      
VB 0.47 (0.32−0.63) < 0.001 0.22 (-0.07−0.51) 0.140 0.05 
GVB 0.20 (0.00−0.40) 0.052 0.66 (0.32−1.00) < 0.001 0.25 

Linear functions of the form y = ax + b were fit to observations of geometric attributes: AD (%), the 4 
percent of total damaged cross-sectional area; LO (m), the offset length between the centroid of the 5 
trunk and the centroid of the largest damaged part; and R (dimensionless), the roundness of the trunk, 6 
RT, and largest damaged part, RD.  7 
bFor each sonic tomogram, either violet and blue (VB) or green, violet, and blue (GVB) was used to 8 
select damaged parts. In a PiCUS® sonic tomogram, the four colors used to visualize acoustic 9 
transmission speeds and the corresponding internal wood condition are as follows: brown, solid; 10 
green, intermediate; violet, damaged; and blue, damaged.  11 
 12 
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Table 4: Analysis of variance of the effect of mathematical methods and colors used to select 1 
damaged parts on the absolute difference (%) between maximum ZLOSS determined using sonic 2 
tomograms and binary images of the destructively measured internal condition of trees 3 
Effecta df F p Level LS Mean (SE)b 
Colors 1, 700 41.77 < 0.001 VB 0.23 (0.01)a 
    GVB 0.17 (0.01)b 
Methods 6, 700 13.42 < 0.001 Ciftci I(a) 0.16 (0.01)a 
    Ciftci I(b) 0.19 (0.01)a 
    Ciftci I(c) 0.17 (0.01)a 
    Ciftci II 0.19 (0.01)a 
    Coder 0.27 (0.01)b 
    zloss 0.16 (0.01)a 
    Wagener 0.24 (0.01)b 
Colors × Methods 6, 700 0.53 0.785   

aFixed effects include mathematical methods used to estimate ZLOSS from sonic tomograms: Ciftci I(a), 4 
Ciftci I(b), Ciftci I(c), Ciftci II, Coder, Numerical, and Wagener; colors used to select damaged parts 5 
in sonic tomograms: violet and blue (VB) and green, violet, and blue (GVB); and their interaction: 6 
methods × colors. See the accompanying text for more information about the various mathematical 7 
methods used to compute ZLOSS.  8 
bLeast squares (LS) means followed by the same letter are not significantly different at the α = 0.05 9 
level.  10 
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Table 5: Analysis of covariance of the effect of mathematical methods on the absolute difference (%) 1 
between maximum ZLOSS determined using sonic tomograms and binary images of the destructively 2 
measured internal condition of trees, after accounting for geometric features of the examined cross 3 
sections 4 
Effecta df F p Level Parameter estimate 

(95% CI) 
p 

Method 7, 664 2.07 0.045 Ciftci I(a) 0.02 (-0.020−0.062) 0.308 
    Ciftci I(b) 0.01 (-0.029−0.052) 0.582 
    Ciftci I(c) 0.02 (-0.025−0.057) 0.447 
    Ciftci II 0.04 (-0.006−0.076) 0.093 
    Coder 0.07 (0.031−0.113) 0.001 
    zloss 0.04 (-0.006−0.076) 0.097 
    Wagener 0.03 (-0.010−0.072) 0.136 
AD(error) 1, 664 116.59 < 0.001 - 0.46 (0.379−0.548) < 0.001 
LO × Method 7, 664 26.74 < 0.001 Ciftci I(a) 0.51 (0.153−0.868) 0.005 
    Ciftci I(b) 1.02 (0.661−1.376) < 0.001 
    Ciftci I(c) 0.72 (0.362−1.077) < 0.001 
    Ciftci II 0.72 (0.360−1.075) < 0.001 
    Coder 1.32 (0.959−1.674) < 0.001 
    zloss 0.34 (-0.023−0.692) 0.067 
    Wagener 1.43 (1.073−1.788) < 0.001 

aFixed effects include mathematical methods used to estimate ZLOSS from sonic tomograms: Ciftci I(a), 5 
Ciftci I(b), Ciftci I(c), Ciftci II, Coder, Numerical, and Wagener See the accompanying text for more 6 
information about the various mathematical methods used to compute ZLOSS. Covariates include 7 
AD(error) (%), the absolute difference between the percent of total damaged cross-sectional area 8 
measured using tomograms and binary images of the destructively measured internal condition of 9 
trees, and LO (m), the offset length between the centroid of the trunk and the centroid of the largest 10 
damaged part. The form of the associated model is yij = αi + βiw + γx + eij, where αi denotes the 11 
intercept of the ith mathematical method, βi denotes the slope of the ith mathematical method with 12 
respect to the covariate w (LO), γ denotes the overall slope with respect to the covariate x [AD(Error)], 13 
and eij denotes the experimental unit error.  14 
 15 
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Table 6: Mean separation for the analysis of covariance of the effect of mathematical methods on the 1 
absolute difference (%) between maximum ZLOSS determined using sonic tomograms and binary 2 
images of the destructively measured internal condition of trees, determined at six combinations of 3 
two covariates accounting for geometric features of the examined cross sections 4 

AD(Error)a 0    0.4   
LO 0 0.13 0.25  0 0.13 0.25 

Method        
Ciftci I(a) 0.02 (0.02)a 0.09 (0.02)ab 0.15 (0.03)ab  0.21 (0.02)a 0.27 (0.02)ab 0.33 (0.03)ab 
Ciftci I(b) 0.01 (0.02)a 0.14 (0.02)b 0.27 (0.03)bc  0.20 (0.02)a 0.33 (0.02)b 0.45 (0.03)bc 
Ciftci I(c) 0.02 (0.02)a 0.11 (0.02)ab 0.20 (0.03)ab  0.20 (0.02)a 0.30 (0.02)ab 0.38 (0.03)ab 
Ciftci II 0.04 (0.02)a 0.13 (0.02)ab 0.21 (0.03)ab  0.22 (0.02)a 0.31 (0.02)ab 0.40 (0.03)ab 
Coder 0.07 (0.02)a 0.24 (0.02)c 0.40 (0.03)d  0.26 (0.02)a 0.43 (0.02)c 0.59 (0.03)d 
zloss 0.03 (0.02)a 0.08 (0.02)a 0.12 (0.03)a  0.22 (0.02)a 0.26 (0.02)a 0.30 (0.03)a 
Wagener 0.03 (0.02)a 0.22 (0.02)c 0.39 (0.03)cd  0.22 (0.02)a 0.40 (0.02)c 0.57 (0.03)cd 

aCovariates include AD(error) (%), the absolute difference between the percent of total damaged cross-5 
sectional area measured using tomograms and binary images of the destructively measured internal 6 
condition of trees, and LO (m), the offset length between the centroid of the trunk and the centroid of 7 
the largest damaged part. Within each column, least squares (LS) means followed by the same letter 8 
are not significantly different at the α = 0.05 level.  9 
 10 


